Von Mises y el segundo invariante del tensor desviador

En nuestras clases de Diseño Mecánico nos centramos en la práctica de ejercicios. Yo soy muy teórico pero también sé que la teoría aburre a mis alumnos por lo que trato de incluir la mínima necesaria en mis clases.

Por ejemplo, el criterio de Von Mises se suele utilizar sin más en nuestras clases como:

$$\bar{\sigma} = \sigma_Y$$

Es decir, la plastificación se produce cuando la tensión equivalente de Von Mises es igual al límite elástico.

Sin embargo, a mí me gusta, dado que se tarda muy poco, arrancar la explicación del criterio a partir del segundo invariante del tensor desviador, \(J’_2\). En esta definición más primitiva que la anterior, la plastificación ocurre cuando dicho invariante es igual a un valor crítico \(K^2\) (el cuadrado está ahí por comodidad en la solución):

$$J’_2 = K^2$$

En este punto, nos vamos al ensayo de tracción simple, que en estos casos siempre tenemos a mano, y para el que:

$$J’_2 = \frac{1}{2} \sigma’_{ij} \sigma’_{ij} = \frac{1}{2} \sigma_I^2$$

donde el tensor \(\sigma’_{ij}\), como sabrán los alumnos de esta asignatura, es el tensor desviador, de componentes:

$$\sigma’_{ij} = \left(
\begin{array}{c c c}
\frac{2}{3} \sigma_I& 0 & 0\\
0 &-\frac{1}{3} \sigma_I& 0 \\
0 & 0 & -\frac{1}{3}\sigma_I
\end{array}
\right)
$$

Donde /(\sigma_I\) es la tensión principal mayor (las otras son nulas).

Como buscamos el momento de la plastificación \(\sigma_I = \sigma_Y\):

$$J’_2 = \frac{1}{3} \sigma_Y^2$$

$$ \frac{1}{3} \sigma_Y^2 = K^2$$

$$ K = \frac{\sigma_Y}{\sqrt {3}} $$

Y dado que la tensión equivalente se puede escribir como:

$$ \bar{\sigma}= \sqrt{3 J’_2}$$

queda despejando

$$J’_2 = \frac{1}{3} \bar{\sigma}^2$$

$$ \frac{1}{3} \bar{\sigma}^2 = \frac{1}{3} \sigma_Y^2$$

Finalmente, obtenemos:

$$\boxed{\bar{\sigma} =  \sigma_Y}$$


Cualquier error encontrado o sugerencia al artículo será bien recibida.
El material recogido en este blog posee derechos de autor. No está permitido su reproducción total o parcial sin autorización previa escrita del autor.
Somos una academia universitaria de arquitectura e ingeniería. Estamos especializados en estructuras. Si quieres saber más acerca de nuestras clases entra en la web de nuestra academia

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *